Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.460
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400266

RESUMO

Hand-gripping training is important for improving the fundamental functions of human physical activity. Bernstein's idea of "repetition without repetition" suggests that motor control function should be trained under changing states. The randomness level of load should be visualized for self-administered screening when repeating various training tasks under changing states. This study aims to develop a sensing methodology of random loads applied to both the agonist and antagonist skeletal muscles when performing physical tasks. We assumed that the time-variability and periodicity of the applied load appear in the time-series feature of muscle deformation data. In the experiment, 14 participants conducted the gripping tasks with a gripper, ball, balloon, Palm clenching, and paper. Crumpling pieces of paper (paper exercise) involves randomness because the resistance force of the paper changes depending on the shape and layers of the paper. Optical myography during gripping tasks was measured, and time-series features were analyzed. As a result, our system could detect the random movement of muscles during training.


Assuntos
Mãos , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Mãos/fisiologia , Exercício Físico/fisiologia , Força da Mão/fisiologia , Miografia
2.
Muscle Nerve ; 69(4): 409-415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38323736

RESUMO

INTRODUCTION: Magnetic resonance neurography (MRN) and myography (MRM) are emerging imaging methods for detecting diseases of the peripheral nerve system (PNS). Most patients with PNS diseases also undergo needle electromyography (EMG). This study examined whether EMG led to lesions that were detectable using MRN/MRM and whether these lesions could impair image interpretation. METHODS: Ten patients who underwent clinically indicated EMG were recruited. MRN/MRM was performed before and 2-6 h after EMG, and if achievable, 2-3 days later. T2 signal intensity (SI) of the tibialis anterior muscle (TA) was quantified, and sizes and SI of the new lesions were measured. Visual rating was performed independently by three neuroradiologists. RESULTS: T2 lesions at the site of needle insertion, defined as focal edema, were detectable in 9/10 patients. The mean edema size was 31.72 mm2 (SD = 14.42 mm2 ) at the first follow-up. Susceptibility-weighted imaging lesions, defined as (micro) hematomas were detected in 5/10 patients (mean size, 23.85 mm2 [SD = 12.59 mm2 ]). General muscle SI of the TA did not differ between pre- and post-EMG examinations. Lesions size was relatively small, and the readers described image interpretation as not impaired by these lesions. DISCUSSION: This study showed that focal edema and hematomas frequently occurred after needle EMG and could be observed using MRN/MRM. As general muscle SI was not affected and image interpretation was not impaired, we concluded that needle EMG did not interfere with MRN/MRM.


Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Eletromiografia , Doenças do Sistema Nervoso Periférico/patologia , Imageamento por Ressonância Magnética/métodos , Miografia , Edema , Hematoma
3.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391995

RESUMO

This present work is aimed at conducting fundamental and exploratory studies of the mechanisms of electrical impedance signal formation. This paper also considers morphofunctional changes in forearm tissues during the performance of basic hand actions. For this purpose, the existing research benches were modernized to conduct experiments of mapping forearm muscle activity by electrode systems on the basis of complexing the electrical impedance signals and electromyography signals and recording electrode systems' pressing force using force transducers. Studies were carried out with the involvement of healthy volunteers in the implementation of vertical movement of the electrode system and ultrasound transducer when the subject's upper limb was positioned in the bed of the stand while performing basic hand actions in order to identify the relationship between the morphofunctional activity of the upper limb muscles and the recorded parameters of the electro-impedance myography signal. On the basis of the results of the studies, including complex measurements of neuromuscular activity on healthy volunteers such as the signals of electro-impedance myography and pressing force, analyses of the morphofunctional changes in tissues during action performance on the basis of ultrasound and MRI studies and the factors influencing the recorded signals of electro-impedance myography are described. The results are of fundamental importance and will enable reproducible electro-impedance myography signals, which, in turn, allow improved anthropomorphic control.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Impedância Elétrica , Eletromiografia , Contração Muscular/fisiologia , Miografia/métodos
4.
Med Biol Eng Comput ; 62(5): 1313-1332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305814

RESUMO

Precise feedback assures precise control commands especially for assistive or rehabilitation devices. Biofeedback systems integrated with assistive or rehabilitative robotic exoskeletons tend to increase its performance and effectiveness. Therefore, there has been plenty of research in the field of biofeedback covering different aspects such as signal acquisition, conditioning, feature extraction and integration with the control system. Among several types of biofeedback systems, Force myography (FMG) technique is a promising one in terms of affordability, high classification accuracies, ease to use, and low computational cost. Compared to traditional biofeedback systems such as electromyography (EMG) which offers some invasive techniques, FMG offers a completely non-invasive solution with much less effort for preprocessing with high accuracies. This work covers the whole aspects of FMG technique in terms of signal acquisition, feature extraction, signal processing, developing the machine learning model, evaluating tools for the performance of the model. Stating the difference between real-time and offline assessment, also highlighting the main uncovered points for further study, and thus enhancing the development of this technique.


Assuntos
Movimento , Miografia , Miografia/métodos , Eletromiografia/métodos , Fenômenos Mecânicos , Processamento de Sinais Assistido por Computador
5.
Physiol Rep ; 12(1): e15911, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212292

RESUMO

Wire myography to test vasomotor functions of blood vessels ex-vivo are well-established for the systemic circulation, however, there is no consensus on protocols for pulmonary arteries. We created a standardized wire myography protocol for healthy rat PAs and validated this in a pulmonary hypertension (PH) model. Vessels stretched to higher initial tensions (5.0, 7.5 and 10.0 mN) exhibited a uniform response to phenylephrine, a larger dynamic range, and lower EC50 values. The endothelium-mediated relaxation showed that moderate tensions (7.5 and 10.0 mN) produced robust responses with higher maximum relaxation and lower EC50 values. For endothelium independent responses, the higher initial tension groups had lower and more consistent EC50 values than the lower initial tension groups. Pulmonary arteries from rats with PH were more responsive to vasoactive drugs when subjected to a higher initial tension. Notably, vessels in the PH group subjected to 15.0 mN exhibited high dynamic ranges in contractile and relaxation responses without tearing. Lastly, we observed attenuated cholinergic responses in these vessels-consistent with endothelial dysfunction in PH. Therefore, a moderate initial tension of 7.5-10.0 mN is optimal for healthy rat pulmonary arteries and a higher initial tension of 15.0 mN is optimal for pulmonary arteries from animals with PH.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Ratos , Masculino , Animais , Fenilefrina , Miografia/métodos , Vasodilatação
6.
Res Vet Sci ; 168: 105135, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194891

RESUMO

INTRODUCTION: Impaired muscle function is a frequent consequence of musculoskeletal disorders in dogs. Musculoskeletal disorders, especially stifle joint diseases, are common in dogs and assessment of muscle function in dogs is clinically relevant. Acoustic myography (AMG) is a non-invasive method to assess muscle activity. Quantifying muscle function in normal dogs could help identify clinically relevant changes in dogs with orthopaedic disease and allow targeted interventions to improve recovery in these. The objectives of the study were to characterize hindlimb muscle function in healthy dogs using AMG and to investigate the repeatability and reproducibility of AMG in dogs. METHODS: Healthy dogs (15-40 kg) without musculoskeletal disorders were recruited and screened for eligibility to participate in the study. The muscle activity in four hindlimb muscles related to the stifle was assessed using AMG. The degree of symmetry between the hindlimbs in these dogs was investigated and the reliability of AMG was evaluated. RESULTS AND CONCLUSIONS: The study population comprised 21 dogs. Reference intervals and symmetry indices for AMG scores of the hindlimb muscles were identified, with highest variability for the E-scores. For all AMG-scores, same-day variation was lower than between days variation, and both were lowest for S- and T-scores. Further investigation is needed to establish if AMG can enable discrimination between dogs with altered muscle function and healthy dogs.


Assuntos
Doenças do Cão , Doenças Musculoesqueléticas , Humanos , Cães , Animais , Reprodutibilidade dos Testes , Eletromiografia , Miografia/métodos , Músculos , Acústica , Membro Posterior , Joelho de Quadrúpedes , Doenças Musculoesqueléticas/veterinária
7.
Muscle Nerve ; 69(3): 288-294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787098

RESUMO

INTRODUCTION/AIMS: Electrical impedance myography (EIM) is a noninvasive technique being used in clinical studies to characterize muscle by phase, reactance, and resistance after application of a low-intensity current. The aim of this study was to obtain 50-kHz EIM data from healthy volunteers (HVs) for use in future clinical and research studies, perform reliability tests on EIM outcome measures, and compare findings with muscle ultrasound variables. METHODS: Four arm and four leg muscles of HVs were evaluated using an EIM device with two sensors, P/N 20-0045 and P/N 014-009. Muscles were evaluated individually and eight-muscle average (8MU), four-muscle upper extremity average, and four-muscle lower extremity average. An intraclass correlation coefficient (ICC) was applied to assess interrater, intrarater, and intersensor reliability using a subset of HVs. Ultrasound studies on muscle thickness and elastography were also performed on a subset of HVs. RESULTS: For the P/N 20-0045 sensor, the 8MU EIM mean and standard deviation (n = 41) was 14.54 ± 3.31 for phase, 7.04 ± 1.22 for reactance, and 28.91 ± 7.63 for resistance. Reliability for 8MU phase (n = 22) was good to excellent for both interrater (n = 22, ICC = 0.920, 95% CI 0.820 to 0.966) and intrarater (n = 22, ICC = 0.950, 95% CI 0.778 to 0.983). The P/N 014-009 sensor had similar reliability findings. Correlation analyses showed no association between EIM and muscle thickness. DISCUSSION: EIM is a reproducible measure of muscle physiology. Obtaining EIM values from HVs allows us to gain a better understanding how EIM may be altered in diseased muscle.


Assuntos
Músculo Esquelético , Miografia , Humanos , Impedância Elétrica , Reprodutibilidade dos Testes , Voluntários Saudáveis , Miografia/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia
8.
Head Neck ; 46(3): 581-591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133080

RESUMO

BACKGROUND: This pilot study analyzed correlations between tongue electrical impedance myography (EIM), standard tongue electromyography (EMG), and tongue functional measures in N = 4 long-term oropharyngeal cancer (OPC) survivors. METHODS: Patients were screened for a supportive care trial (NCT04151082). Hypoglossal nerve function was evaluated with genioglossus needle EMG, functional measures with the Iowa oral performance instrument (IOPI), and multi-frequency tissue composition with tongue EIM. RESULTS: Tongue EIM conductivity was higher for patients with EMG-confirmed cranial nerve XII neuropathy than those without (p = 0.005) and in patients with mild versus normal EMG reinnervation ratings (16 kHz EIM: p = 0.051). Tongue EIM correlated with IOPI strength measurements (e.g., anterior maximum isometric lingual strength: r2 = 0.62, p = 0.020). CONCLUSIONS: Tongue EIM measures related to tongue strength and the presence of XII neuropathy. Noninvasive tongue EIM may be a convenient adjunctive biomarker to assess tongue health in OPC survivors.


Assuntos
Doenças do Nervo Hipoglosso , Neoplasias Orofaríngeas , Humanos , Impedância Elétrica , Músculo Esquelético , Miografia , Neoplasias Orofaríngeas/terapia , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Sobreviventes , Língua
10.
Artigo em Inglês | MEDLINE | ID: mdl-38082816

RESUMO

The ability to estimate user intention from surface electromyogram (sEMG) signals is a crucial aspect in the design of powered prosthetics. Recently, researchers have been using regression techniques to connect the user's intent, as expressed through sEMG signals, to the force applied at the fingertips in order to achieve a natural and accurate form of control. However, there are still challenges associated with processing sEMG signals that need to be overcome to allow for widespread and clinical implementation of upper limb prostheses. As a result, alternative modalities functioning as promising control signals have been proposed as source of control input rather than the sEMG, such as Acoustic Myography (AMG). In this study, six high sensitivity array microphones were used to acquire AMG signals, with custom-built 3D printed microphone housing. To tackle the challenge of extracting the relevant information from AMG signals, the Wavelet Scattering Transform (WST) was utilized. alongside a Long Short-Term Memory (LSTM) neural network model for predicting the force from the AMG. The subjects were asked to use a hand dynamometer to measure the changes in force and correlate that to the force predicted by using the AMG features. Seven subjects were recruited for data collection in this study, using hardware designed by the research team. the performance results showed that the WST-LSTM model can be robustly utilized across varying window sizes and testing schemes, to achieve average NRMSE results of approximately 8%. These pioneering results suggest that AMG signals can be utilized to reliably estimate the force levels that the muscles are applying.Clinical Relevance- This research presents a new method for controlling upper limb prostheses using Acoustic Myography (AMG) signals. A novel method mapping the AMG signals to force applied by the corresponding muscles is developed. The presented findings have the potential to lead to the development of more natural and accurate control of human-machine interfaces.


Assuntos
Memória de Curto Prazo , Miografia , Humanos , Miografia/métodos , Eletromiografia , Músculos/fisiologia , Acústica
11.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067728

RESUMO

Force myography (FMG) represents a promising alternative to surface electromyography (EMG) in the context of controlling bio-robotic hands. In this study, we built upon our prior research by introducing a novel wearable armband based on FMG technology, which integrates force-sensitive resistor (FSR) sensors housed in newly designed casings. We evaluated the sensors' characteristics, including their load-voltage relationship and signal stability during the execution of gestures over time. Two sensor arrangements were evaluated: arrangement A, featuring sensors spaced at 4.5 cm intervals, and arrangement B, with sensors distributed evenly along the forearm. The data collection involved six participants, including three individuals with trans-radial amputations, who performed nine upper limb gestures. The prediction performance was assessed using support vector machines (SVMs) and k-nearest neighbor (KNN) algorithms for both sensor arrangments. The results revealed that the developed sensor exhibited non-linear behavior, and its sensitivity varied with the applied force. Notably, arrangement B outperformed arrangement A in classifying the nine gestures, with an average accuracy of 95.4 ± 2.1% compared to arrangement A's 91.3 ± 2.3%. The utilization of the arrangement B armband led to a substantial increase in the average prediction accuracy, demonstrating an improvement of up to 4.5%.


Assuntos
Gestos , Dispositivos Eletrônicos Vestíveis , Humanos , Extremidade Superior , Miografia/métodos , Eletromiografia/métodos , Mãos , Algoritmos
12.
Skelet Muscle ; 13(1): 19, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980539

RESUMO

BACKGROUND: The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice. METHODS: The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice. RESULTS: MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance. CONCLUSIONS: These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Impedância Elétrica , Camundongos Endogâmicos C57BL , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Miografia , Biomarcadores
13.
Sci Rep ; 13(1): 19520, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945675

RESUMO

Neurogenic bladder (NB) affects people of all ages. Electric impedance myography (EIM) assesses localized muscle abnormalities. Here, we sought to investigate whether unique detrusor EIM signatures are present in NB due to spinal cord injury (SCI). Twenty-eight, 8-10 weeks old, C57BL/6J female mice were studied. Twenty underwent spinal cord transection; 8 served as controls. Cohorts were euthanized at 4 and 6 weeks after spinal cord transection. Each bladder was measured in-situ with EIM with applied frequencies of 1 kHz to 10 MHz, and then processed for molecular and histologic study. SCI mice had greater bladder-to-body weight ratio (p < 0.0001), greater collagen deposition (p = 0.009), and greater smooth-muscle-myosin-heavy-chain isoform A/B ratio (p < 0.0001). Compared with the control group, the SCI group was associated with lower phase, reactance, and resistance values (p < 0.01). Significant correlations (p < 0.001) between bladder-to-body weight ratios and EIM measurements were observed across the entire frequency spectrum. A severely hypertrophied phenotype was characterized by even greater bladder-to-body weight ratios and more depressed EIM values. Our study demonstrated distinct EIM alterations in the detrusor muscle of mice with NB due to SCI. With further refinement, EIM may offer a potential point-of-care tool for the assessment of NB and its response to treatment.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Humanos , Camundongos , Feminino , Animais , Músculo Esquelético/fisiologia , Impedância Elétrica , Bexiga Urinaria Neurogênica/etiologia , Camundongos Endogâmicos C57BL , Miografia , Fenótipo , Peso Corporal
14.
Sci Rep ; 13(1): 18252, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880267

RESUMO

Acute Compartment Syndrome (ACS) is one of the most devastating orthopedic conditions, affecting any of the body's many compartments, which, if sufficiently severe, may result in disability and amputation. Currently, intra-compartmental pressure measurements serve as the gold standard for diagnosing ACS. Diagnosing limbs at risk for ACS before irreversible damage to muscle and nerve is critical. Standard approaches for diagnosing impending compartment syndrome include clinical evaluation of the limb, such as assessment for "tightness" of the overlying skin, reduced pulses distally, and degree of pain, none of which are specific or sensitive. We have proposed a novel method to detect ACS via electrical impedance myography (EIM), where a weak, high-frequency alternating current is passed between one pair of electrodes through a region of tissue, and the resulting surface voltages are measured via a second pair. We evaluated the ability of EIM to detect early muscle ischemia in an established murine model of compression-induced muscle injury, where we collected resistance, reactance, and their dimensionless product, defined as Relative Injury Index (RII) during the study. Our model generated reproducible hypoxia, confirmed by Hypoxyprobe™ staining of endothelial regions within the muscle. Under conditions of ischemia, we demonstrated a reproducible, stable, and significant escalation in resistance, reactance, and RII values, compared to uninjured control limbs. These data make a reasonable argument for additional investigations into using EIM for the early recognition of muscle hypoperfusion and ischemia. However, these findings must be considered preliminary steps, requiring further pre-clinical and clinical validation.


Assuntos
Síndromes Compartimentais , Músculo Esquelético , Ratos , Camundongos , Animais , Músculo Esquelético/fisiologia , Impedância Elétrica , Miografia/métodos , Síndromes Compartimentais/diagnóstico , Síndromes Compartimentais/etiologia , Isquemia/diagnóstico
15.
Nat Commun ; 14(1): 6286, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813833

RESUMO

Altered vasoactivity is a major characteristic of cardiovascular and oncological diseases, and many therapies are therefore targeted to the vasculature. Therapeutics which are selective for the diseased vasculature are ideal, but whole-body selectivity of a therapeutic is challenging to assess in practice. Vessel myography is used to determine the functional mechanisms and evaluate pharmacological responses of vascularly-targeted therapeutics. However, myography can only be performed on ex vivo sections of individual arteries. We have developed methods for implementation of spherical-view photoacoustic tomography for non-invasive and in vivo myography. Using photoacoustic tomography, we demonstrate the measurement of acute vascular reactivity in the systemic vasculature and the placenta of female pregnant mice in response to two vasodilators. Photoacoustic tomography simultaneously captures the significant acute vasodilation of major arteries and detects selective vasoactivity of the maternal-fetal vasculature. Photoacoustic tomography has the potential to provide invaluable preclinical information on vascular response that cannot be obtained by other established methods.


Assuntos
Artérias , Vasodilatadores , Gravidez , Camundongos , Feminino , Animais , Artérias/diagnóstico por imagem , Artérias/fisiologia , Vasodilatação/fisiologia , Placenta/diagnóstico por imagem , Miografia/métodos
16.
Am J Vet Res ; 84(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709264

RESUMO

OBJECTIVE: To assess the feasibility of isometric myography in pet dogs with myxomatous mitral valve disease (MMVD) to determine its use in quantifying endothelial dysfunction. ANIMALS: 9 dogs euthanized for medical reasons. METHODS: Femoral, renal, and mesenteric arteries were collected postmortem and stored in physiological saline solution at 4 °C for myography. Mitral valves were scored for myxomatous degeneration (grades 1 to 4). Sections of arteries were mounted in wells, immersed in physiological saline solution perfused with 95% O2 and 5% CO2 at 37 °C, and stretched to an internal circumference (IC) that generated the maximal difference between active and passive wall tension (IC1). Normalization factors were calculated by dividing the IC1 by the IC at which the passive wall tension was 100 mm Hg (IC100). Vasoconstriction to phenylephrine and vasodilation to acetylcholine (endothelial dependent) and sodium nitroprusside (endothelial independent) were assessed by cumulative dose-response curves. RESULTS: Median MMVD grade was 3. Mean values of normalization factors were 1.00 ± 0.14 (renal, n = 15), 1.00 ± 0.10 (femoral, 8), and 1.05 ± 0.12 (mesenteric, 6). Responses to phenylephrine were similar between dogs (P = .14). Reduced responses to acetylcholine compared with sodium nitroprusside were identified in 15 arteries, suggesting endothelial dysfunction. CLINICAL RELEVANCE: Isometric myography of arteries from pet dogs is feasible and can identify loss of endothelial-dependent relaxation in dogs with MMVD postmortem. Its use in further research can lead to a better understanding of the pathophysiology mechanisms of this disease.


Assuntos
Doenças do Cão , Doenças das Valvas Cardíacas , Cães , Animais , Valva Mitral , Acetilcolina , Nitroprussiato , Solução Salina , Doenças das Valvas Cardíacas/veterinária , Miografia , Fenilefrina
17.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732831

RESUMO

GOAL: The present study aimed to investigate the behavior of dynamic electrical impedance myography (dEIM) signals during a 100-s period of the dynamic contraction of Wistar rats' gastrocnemius evoked by electrical stimulation and to link the variations in bioimpedance with muscular energy systems. METHODS: Muscle contraction used 30% of the maximum muscular force and persisted for 100 s, along which dynamic bioimpedance signals were acquired. Based on the bioimpedance signals, two parameters, ΔZc and ΔZpc, were calculated to allow the analysis of their changes with the energy systems that supplied adenosine triphosphate (ATP) to the muscle. ΔZc indicated the variation of impedance of a twitch cycle compared to the values observed during the rest period preceding the cycle, and ΔZpc indicated slow bioimpedance variations compared to the values obtained during the rest period. RESULTS: The results indicated that ΔZc followed the force behavior, achieving a change rate of ∼14%. This parameter was associated with instantaneous impedance changes owing to the occurrence of each twitch. CONCLUSION: Although the findings of this study were linked to energy system processes, future studies are required for improving the understanding of the underlying mechanisms involved in dEIM. SIGNIFICANCE: The results contributed to understanding the relation of energy systems that supply ATP to the muscles with dEIM variations that occurred during muscle activity.


Assuntos
Trifosfato de Adenosina , Músculo Esquelético , Ratos , Animais , Impedância Elétrica , Ratos Wistar , Miografia
18.
J Neuroeng Rehabil ; 20(1): 101, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537602

RESUMO

BACKGROUND: Assistive robotic hand orthoses can support people with sensorimotor hand impairment in many activities of daily living and therefore help to regain independence. However, in order for the users to fully benefit from the functionalities of such devices, a safe and reliable way to detect their movement intention for device control is crucial. Gesture recognition based on force myography measuring volumetric changes in the muscles during contraction has been previously shown to be a viable and easy to implement strategy to control hand prostheses. Whether this approach could be efficiently applied to intuitively control an assistive robotic hand orthosis remains to be investigated. METHODS: In this work, we assessed the feasibility of using force myography measured from the forearm to control a robotic hand orthosis worn on the hand ipsilateral to the measurement site. In ten neurologically-intact participants wearing a robotic hand orthosis, we collected data for four gestures trained in nine arm configurations, i.e., seven static positions and two dynamic movements, corresponding to typical activities of daily living conditions. In an offline analysis, we determined classification accuracies for two binary classifiers (one for opening and one for closing) and further assessed the impact of individual training arm configurations on the overall performance. RESULTS: We achieved an overall classification accuracy of 92.9% (averaged over two binary classifiers, individual accuracies 95.5% and 90.3%, respectively) but found a large variation in performance between participants, ranging from 75.4 up to 100%. Averaged inference times per sample were measured below 0.15 ms. Further, we found that the number of training arm configurations could be reduced from nine to six without notably decreasing classification performance. CONCLUSION: The results of this work support the general feasibility of using force myography as an intuitive intention detection strategy for a robotic hand orthosis. Further, the findings also generated valuable insights into challenges and potential ways to overcome them in view of applying such technologies for assisting people with sensorimotor hand impairment during activities of daily living.


Assuntos
Atividades Cotidianas , Procedimentos Cirúrgicos Robóticos , Humanos , Estudos de Viabilidade , Mãos/fisiologia , Miografia , Aparelhos Ortopédicos
19.
Physiol Meas ; 44(5)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37172607

RESUMO

Objective.To date, measurement of the conductivity and relative permittivity properties of anisotropic biological tissues using electrical impedance myography (EIM) has only been possible through an invasiveex vivobiopsy procedure. Here, we present a novel forward and inverse theoretical modeling framework to estimate these properties combining surface and needle EIM measurements.Methods. The framework here presented models the electrical potential distribution within a monodomain, homogeneous, and three-dimensional anisotropic tissue. Finite-element method (FEM) simulations and tongue experimental results verify the validity of our method to reverse-engineer three-dimensional conductivity and relative permittivity properties from EIM measurements.Results. FEM-based simulations confirm the validity of our analytical framework, with relative errors between analytical predictions and simulations smaller than 0.12% and 2.6% in a cuboid and tongue model, respectively. Experimental results confirm qualitative differences in the conductivity and the relative permittivity properties in thex,y, andzdirections.Conclusion. Our methodology enables EIM technology to reverse-engineer the anisotropic tongue tissue conductivity and relative permittivity properties, thus unfolding full forward and inverse EIM predictability capabilities.Significance. This new method of evaluating anisotropic tongue tissue will lead to a deeper understanding of the role of biology necessary for the development of new EIM tools and approaches for tongue health measurement and monitoring.


Assuntos
Músculo Esquelético , Miografia , Impedância Elétrica , Condutividade Elétrica , Língua
20.
Sci Rep ; 13(1): 7191, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137956

RESUMO

Age-related deficits in skeletal muscle function, termed sarcopenia, are due to loss of muscle mass and changes in the intrinsic mechanisms underlying contraction. Sarcopenia is associated with falls, functional decline, and mortality. Electrical impedance myography (EIM)-a minimally invasive, rapid electrophysiological tool-can be applied to animals and humans to monitor muscle health, thereby serving as a biomarker in both preclinical and clinical studies. EIM has been successfully employed in several species; however, the application of EIM to the assessment of zebrafish-a model organism amenable to high-throughput experimentation-has not been reported. Here, we demonstrated differences in EIM measures between the skeletal muscles of young (6 months of age) and aged (33 months of age) zebrafish. For example, EIM phase angle and reactance at 2 kHz showed significantly decreased phase angle (5.3 ± 2.1 versus 10.7 ± 1.5°; p = 0.001) and reactance (89.0 ± 3.9 versus 172.2 ± 54.8 ohms; p = 0.007) in aged versus young animals. Total muscle area, in addition to other morphometric features, was also strongly correlated to EIM 2 kHz phase angle across both groups (r = 0.7133, p = 0.01). Moreover, there was a strong correlation between 2 kHz phase angle and established metrics of zebrafish swimming performance, including turn angle, angular velocity, and lateral motion (r = 0.7253, r = 0.7308, r = 0.7857, respectively, p < 0.01 for all). In addition, the technique was shown to have high reproducibility between repeated measurements with a mean percentage difference of 5.34 ± 1.17% for phase angle. These relationships were also confirmed in a separate replication cohort. Together, these findings establish EIM as a fast, sensitive method for quantifying zebrafish muscle function and quality. Moreover, identifying the abnormalities in the bioelectrical properties of sarcopenic zebrafish provides new opportunities to evaluate potential therapeutics for age-related neuromuscular disorders and to interrogate the disease mechanisms of muscle degeneration.


Assuntos
Sarcopenia , Peixe-Zebra , Humanos , Animais , Impedância Elétrica , Reprodutibilidade dos Testes , Miografia/métodos , Músculo Esquelético/fisiologia , Atrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...